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In the present paper, we solve the radial parts of Dirac equation between the inner and
the outer horizon in the Schwarzschild-de Sitter (SdS for short) geometry. Complete
physical parameter space is divided into two regions depending on the height of the
potential barrier and the energy of the incoming particle. In each region, we concentrate
on two limiting cases. The first case is when the two horizons are close to each other
and the second case is when the horizons are far apart. In each case, we give the
semi-analytical solution by using WKB (Wentzel-Krames-Brillouin) approximation
and show the instantaneous reflection and transmission coefficients as well as the radial
wave functions graphically.
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1. INTRODUCTION

The curved spacetime outside a black hole is studied by many authors.
Kinnersley (1969) introduced a null-tetrad frame in 1969. Teukolsky (1973) decou-
pled and separated the equations for gravitational, electromagnetic and neutrino
field by using this null-tetrad frame. Chandrasekhar (1976); Chankrasekhar (1983)
also used this null-tetrad frame to separate the Dirac equation in Kerr geometry into
radial and angular parts. Then Page (1976) extended this work to Kerr–Newman
geometry. Basing on the above work, Khanal discussed the problem about the
reflection and transmission coeffients of the particles scattering from a black hole
(Khanal and Panchapakesan, 1980; Khanal, 1984). Liu et al. (1980); Zhao et al.
(1981) studied Hawking radiation of Dirac particles around semiextreme Kerr
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and semi-extreme Kerr–Newman black hole separately. They only gave the so-
lutions in the limiting case close to the horizon(s). While little work has been
done to study the transimission properties in the whole range of the space. Af-
ter Chakrabarti (1984) had solved the angular part of the Dirac equation in Kerr
geometry and found the corresponding eigenvalues for different Kerr parameters,
Mukhopadhyay and Chakrabarti (1999, 2000) solved the spatially complete radial
equations in Schwarzschild and Kerr geometry, they calculated the local values
of the reflection and transmission coefficients and gave analytical expressions of
radial wave functions by using WKB approximation. Most prior works in this
area have been concerned with the background spacetime without cosmological
constant �. The spacetime with cosmological constant � is much less studied.
One example is the study of Brevik and Simonsen (2001) about the scalar field
equation in SdS space.

In the present paper, we solve the Dirac equation in SdS geometry. We
consider the case that the particles scatter from the SdS black hole. This
space is bounded by two horizons, an inner “black hole” horizon and an outer
“cosmological” horizon, the latter being detemined by the cosmological constant
�. What we are interested in is the region between the two horizons.

In the next section, we start by presenting the basic equation in SdS space.
Then following Mukhopadhyay and Chakrabarti (1999, 2000), we also classify
the parameter space in terms of physical and unphysical region and solve the wave
equation in physical region. We consider two cases, one is when the two horizons
are lying close to each other (being called Nariai case), the other is when the two
horizons are wide separated. In Section 4 we give the semi-analytical solutions
and show the spatial variation of the potential, the instantaneous reflection and
transmission coefficients and wave functions graphically by using WKB method
for the two cases in physical region. We also use a quantum mechanical method
to calculate the reflection coefficient numerically and compare the results by the
two methods. In Section 5 we compare the results of different parameters. Finally
in Section 6 we draw a conclusion.

We adopt the signature (− + ++) and put h̄ = G = C = 1.

2. THE DIRAC EQUATION IN SdS GEOMETRY

The line element in SdS space takes the form

ds2 = −
(

1 − 2M

r
− �

3
r2

)
dt2 + dr2

1 − 2M
r

− �
3 r2

+ r2 dθ2 + r2 sin2 θdϕ2.

(1)
Following Chandrasekhar (1976, 1983), we obtained the Dirac equation in SdS
geometry and separated it into radial and angular wave functions. The coupled
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radial equations are given by

�1/2DoR−1/2 = (λ + imr)�1/2R+1/2, (2a)

�1/2D†
o�

1/2R+1/2 = (λ − imr)R−1/2, (2b)

and the angular equations can be written as

L1/2S+1/2 = −λS−1/2, (2c)

L
†
1/2S−1/2 = −λS+1/2, (2d)

where

Dn = ∂r + ir2σ

�
+ 2n

r − M − 2
3�r3

�
, (3a)

D†
n = ∂r − ir2σ

�
+ 2n

r − M − 2
3�r3

�
, (3b)

Ln = ∂θ + n cot θ + m cosec θ, (3c)

L†
n = ∂θ + n cot θ − m cosec θ, (3d)

� ≡ r2 − 2Mr − �

3
r4. (3e)

Here n is an integer, σ is the frequency of incoming Dirac wave. M is the mass of
the black hole, m is the rest mass of the Dirac particles, and R±1/2 are the radial
wave functions corresponding to spin ± 1

2 , S±1/2 are the angular functions. � is
called horizon function.

The cosmological constant � is included in the horizon function. It only
affects the radial parts of Dirac equation. The angular equations have the same
form with that in Schwarzschild geometry. The eigenvalue of the angular equation
for spin ± 1

2 is obtained as λ = (� + 1
2 )2 (Chakrabarti, 1984; Newman and Penrose,

1966; Goldberg et al., 1967), where � is the orbital quantum number and λ is the
separation constant. Here, we choose � = 1

2 and then λ = 1. We can explore the
nature of the solutions for other orbital quantum numbers in future.

Following Chandrasekhar’s approach, we easily reduce the coupled radial
equations to one dimentional wave equations.

Define tortoise coordinate (Brevik and Simonsen, 2001)

r∗ =
∫

dr

f (r)
. (4)

Here, f (r) = 1 − 2M
r

− �
3 r2 = �

3r
(r − re)(r − ro)(rc − r), where re is the event

radius, rc is the cosmological radius, and ro = −(re + rc) which appears to be of
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no physical significance. After defining surface gravities κi , the tortoise coordinate
in SdS space takes the form

r∗ = 1

2κe

ln

(
r

re

− 1

)
− 1

2κc

ln

(
1 − r

rc

)
+ 1

2κo

ln

(
1 − r

ro

)
, (5)

where

κe = (rc − re)(re − ro)

6re

�, (6a)

κc = (rc − re)(rc − ro)

6rc

�, (6b)

κo = (ro − re)(rc − ro)

6ro

�, (6c)

(for re < r < rc)

d

dr∗
= �

r2

d

dr
, (7)

in terms of r∗, the operators take the forms

Do = r2

�

(
d

dr∗
+ iσ

)
and D†

o = r2

�

(
d

dr∗
− iσ

)
. (8)

Choosing �1/2R+1/2 = P+1/2, R−1/2 = P−1/2, Eqs. (2a) and (2b) become(
d

dr∗
+ iσ

)
P−1/2 = �

r2
(1 + imr)P+1/2, (9)

(
d

dr∗
− iσ

)
P+1/2 = �

r2
(1 − imr)P−1/2, (10)

We choose

θ = tan−1(mr), (11)

which yields cos θ = 1/
√

1 + m2r2, sin θ = mr/
√

1 + m2r2 and

(1 ± imr) = e±iθ
√

1 + m2r2. (12)

Following exactly Chandrasekhar’s approach we write

P+1/2 = ψ+1/2 exp

[
−1

2
i tan−1(mr)

]
, (13a)

P−1/2 = ψ−1/2 exp

[
+1

2
i tan−1(mr)

]
, (13b)



1600 Lyu and Gui

Finally, a choice of

r̂∗ = r∗ + 1

2σ
tan−1(mr), (14a)

yields

dr̂∗ =
(

1 + �

r2

m

2σ

1

1 + m2r2

)
dr∗. (14b)

With these definitions, the differential Eqs. (2a) and (2b) are re-written as(
d

dr̂∗
− iσ

)
ψ+1/2 = Wψ−1/2, (15a)

(
d

dr̂∗
+ iσ

)
ψ−1/2 = Wψ+1/2, (15b)

where

W = �1/2(1 + m2r2)3/2

r2(1 + m2r2) + m�/2σ
. (16)

Let

Z± = ψ+1/2 ± ψ−1/2, (17)

we readily obtain a pair of one dimensional wave equations from the above
equations (

d2

dr̂2∗
+ σ 2

)
Z± = V±Z±, (18)

where

V± = W 2 ± dW

dr̂∗

= �1/2(1 + m2r2)3/2

[r2(1 + m2r2) + m�/2σ ]2

[
�1/2(1 + m2r2)3/2

±
((

r − M − 2

3
�r3

)
(1 + m2r2) + 3m2r�

)]

∓ �3/2(1 + m2r2)5/2

[r2(1 + m2r2) + m�/2σ ]3

[
2r(1 + m2r2)

+ 2m2r3 + m

(
r − M − 2

3
�r3

) /
σ

]
. (19)
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Equation (18) is nothing but one dimensional Schrödinger equation corresponding
to the total energy of the wave σ 2 and potential energy V±. It is clear that we obtain
well behaved functions by using r∗ (and r̂∗) instead of r . The horizons are shifted
to infinity. On the other hand, Eq. (18) is a non-linear equation, we couldn’t give
the analytical solution of it exactly. While in the limiting case when r̂∗ → ±∞,
V → 0, the analytical solution can be given. Here we’ll use a semi-classical
method to draw the wave functions in the whole range of r̂∗.

3. PARAMETER SPACE AND THE METHOD TO SOLVE EQUATIONS

Following the approach of Mukhopadhyay and Chakrabarti (1999, 2000), we
choose the parameters in such a way that there is a significant interaction between
the particle and the black hole. Then the Compton wavelength of the incoming
wave is of the same order as SdS radius, i.e.

re ∼ 1

m
. (20)

Similarly, the frequency of the incoming particle will be of the same order as
inverse of time. So

1

re

∼ σ. (21)

Then we obtain

m ∼ σ ∼ 1

re

. (22)

It means we shall concentrate the region of parameter space close to m = σ , then
the solution would be interesting as pointed out above.

We construct a parameter space in terms of m and σ . Figure 1(a) and (b) show
the parameter spaces corresponding to two limiting cases separately. The first case
is the Nariai case where we choose � = 0.11, the second case is when the two
horizons are far apart, we choose � = 0.001 (Brevik and Simonsen, 2001). Note
we have chosen M (mass of the black hole) = 1.

The parameter space includes physical space (σ > m) and unphysical space
(σ < m). We solve the equation in physical space. This space is divided into
two regions—I: E > Vm and II: E < Vm, where E is equal to σ 2 and Vm is the
maximum of the potential. We’ll show the solutions in these two regions separately.
From Fig. 1 we can see the boundary of region I and II in case of � = 0.11 is pushed
to the left compared with that when � = 0.001. According to this, we can predict
that when 0.001 < � < 0.11, the boundary will be between the two boundaries
in the above two limiting cases. Whatever be the value of � and the physical
parameters, the energy of the incoming particle is always greater than the potential
energy and WKB approximation is generally valid in the whole range in region I.
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Fig. 1. Parameter space in terms of the energy and rest mass of the particles for (a) � = 0.11,
(b) � = 0.001.

In region II, at two points total energy matches with the potential energy and in the
neighbour of those two points WKB approximation is not valid. One has to employ
different method such as Airy functions method to find solutions in this region.

4. SOLUTIONS OF DIRAC EQUATION

4.1. Solution of Region I

We rewrite Eq. (18) as

d2Z+
dr̂2∗

+ (σ 2 − V+)Z+ = 0 (23)

It can be solved by WKB approximation method because the energy of the in-
coming wave is always greater than the potential energy. In Fig. 2(a) and (b), we

show contours of ωmax = max
(

1
k2

dk
dr̂∗

)
for a given set (σ,m) of parameters for two

limiting cases, where k =
√

σ 2 − V+.
From Fig. 2(a) and (b), we can see WKB approximation is safely valid for

any value of r̂∗ except for parameters very close to the boundary of regions I and
II. In Fig. 2a, the parameter space where WKB method being valid is much more
broad than that in Fig. 2b. Let

u(r̂∗) =
∫

k(r̂∗)dr̂∗ + conts. (24)

The solution of the Eq. (23) is

Z+ = A+√
k

exp(iu) + A−√
k

exp(−iu), (25)
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Fig. 2. Contours of constants ωmax = max(| l

k2
dk
dr̂∗ |) for (a) � = 0.11, (b) � = 0.001.

with

A2
+ + A2

− = k. (26)

A± are kept constants throughout in a standard WKB solution. But in our case
the reflection coefficient on the inner horizon should be zero then A± are spatial
dependent, so the standard WKB approximation requies a slight modification
which will be shown later. While at a large distance far apart from the two
horizons where WKB is strictly valid (this can be seen from the relation between
1
k2

dk
dr̂∗

and r̂∗), A+ and A− should tend to be constants, then their difference is also
a constant, i.e.

A+ − A− = c. (27)

Here, c is a constant and is determined from the WKB solution at a large distance
far apart from the two horizons. It with (26) gives

A±(r) = ± c

2
+

√
2k(r) − c2

2
. (28)

This relation can be not satisfied on the inner horizon. We introduce boundary
condition: the refleced component vanishes on the inner boundary. Let A−he

be
the values of A− on the inner horizon, i.e.

A−he
= − c

2
+

√
2k(re) − c2

2
. (29a)

Similarly on the outer boundary

A−hc
= − c

2
+

√
2k(rc) − c2

2
. (29b)
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Since k(rc) = k(re), we have A−hc
= A−he

, that means the instantaneous reflecting
situations are the same on the two horizons.

It is appropriate to use Ã− = (A− − A−he
) rather than A− since Ã vanishes

at r = re. Similarly let Ã+ = (A+ − A+he). Then one obtains physical R and T

on the horizon.
With these conditions, the solution (25) becomes

Z+ = Ã+√
q

exp(iu) + Ã−√
q

exp(−iu), (30)

and

Ã2
+ + Ã2

− = q. (31)

Here, q is to be determined by equating the asymptotic behavior of this
reflection coefficient with that obtained by using WKB method. The condition
| 1
q2

dq

dr̂∗
| 	 1 is found to be satisfied whenever | 1

k2
dk
dr̂∗

| 	 1 is satisfied. Using the
new notations, the instantaneous reflection and transmission coefficients are given
by

R = Ã2
−

q
, T = Ã2

+
q

. (32)

We assume the normalization condition of R + T = 1. Similarly we can get Z−
corresponding potential V− as

Z− = Ã′
+√
q ′ exp(iu′) − Ã′

−√
q ′ exp(−iu′), (33)

the negative sign in front of the reflected wave is to satisfy the asymptotic property
of the wave functions which must conserve the Wronskian (Chankrasekhar, 1983).

We should note that the reflection and transmission coefficients which are
spatial dependence are the “local” or “instantaneous” values. The wave functions
(30, 33) are valid in the whole space. So the WKB approximation used here
should be called instantaneous WKB (IWKB for short). This name is first given
in Mukhopadhyay and Chakrabarti (1999).

Using the solutions of equations with potential V± and the variations above,
we obtain the radial wave functions R+1/2 and R−1/2 for spin up and spin down
particles respectively of the original Dirac equation

Re(R1/2�
1/2) = a+ cos(u − θ ) + a− cos(u + θ )

2
√

k

+a′
+ cos(u′ − θ ) − a′

− cos(u′ + θ )

2
√

k′ , (34a)
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Im(R1/2�
1/2) = a+ sin(u − θ ) − a− sin(u + θ )

2
√

k

+a′
+ sin(u′ − θ ) + a′

− sin(u′ + θ )

2
√

k′ , (34b)

Re(R−1/2) = a+ cos(u + θ ) + a− cos(u − θ )

2
√

k

−a′
+ cos(u′ + θ ) − a′

− cos(u′ − θ )

2
√

k′ , (34c)

Im(R−1/2) = a+ sin(u + θ ) − a− sin(u − θ )

2
√

k

−a′
+ sin(u′ + θ ) + a′

− sin(u′ − θ )

2
√

k′ , (34d)

where a+ = Ã+√
q/k

, a− = Ã−√
q/k

. a′
+√
k′ and a′

−√
k′ are the transmitted and reflected am-

plitudes respectively of the wave corresponding to potential V−.
In Fig. 3(a) and (b), we show the nature of the potential for two cases. It is

clear that potential V± are well behaved. They decrease as the particle approaches
the two horizons. The maximum of the potential corresponding to � = 0.001 is
much higher than that corresponding to � = 0.11. For concreteness, we solve the
equations corresponding to potential V+. In Fig. 4, the nature of V+ (solid line),
k (dashed line) and E (dotted line) for � = 0.001 are shown. As V+ decreasing
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Fig. 3. Behaviour of V+ (solid) and V− (dashed) for (a) � = 0.11, (b) � = 0.001.
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Fig. 4. V+(r̂∗), k(r̂∗) and E for � = 0.001.

near the horizons k goes up. The picture of V+, k and E for � = 0.11 is not given
because V+ is so low that the variation of k is not clear.

In Fig. 5(a) and (b) we show the variation of instantaneous reflection and
transmission coefficients. The instantaneous reflection coefficients of the two
limiting cases vanish on the two horizons. This can be understood because the local
values of the reflection coefficient is only determined by the local potential from
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Fig. 5. (a) Instantaneous reflection (R) coefficienct for � = 0.11, (b) Instantaneous
transmission (T ) (dotted) and reflection (R) (solid) coefficiencts for � = 0.001.
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Eq. (32) and the boundary condition. The potential energy turns out to be a constant
(zero) on the two horizons, so the reflection coefficients on the two horizons have
the same behavior, while we have assumed the zero value of the reflection on
the inner boundary then the zero local value on the outer boundary is acceptable.
On the other hand the value of the reflection coefficient for � = 0.11 is so small
we only draw the instantaneous reflection coefficient for it and the instantaneous
transmission coefficient would be T = 1 − R. Thus the larger the value of � the
higher the maximum of the reflection coefficient. Then when � = 0, the maximum
of the reflection coefficient should be the largest one for all non-negative � value.
In Mukhopadhyay and Chakrabarti (1999) the Schwarzschild case is discussed,
the result showed that the maximum of the reflection coifficient (about 0.7) is much
higher than ours (about 0.14 for � = 0.001 and about 1.03 × 10−6 for � = 0.11
with the same set of parameters σ = m = 0.8).

We show the wave functions for � = 0.11 in Fig. 6(a–d) and � = 0.001 in
Fig. 7(a–d). In each case, we give the function images for both the spin +1/2 and
spin −1/2 particles respectively.

It is obvious that the amplitude as well as the wavelength of the wave functions
remain constants when close to the two horizons where V± are constants. In case
of � = 0.11, the wavelength is almost a constant in the whole range of r̂∗ because
there is very little variation of potential V (r̂∗). While when the two horizons
are far apart from each other there is an obvious variation of the wavelength in
the whole range. The wave length is prolonged by the potential barrier when
the particle transmits toward the black hole. The amplitude of Re(�1/2R+1/2)
and Im(�1/2R+1/2) increases while the amplitude of Re(R−1/2) and Im(R−1/2)
decreases in the areas far away from the horizons. When � = 0, we get the
figure of the wave functions in Schwarzschild geometry which was discussed in
Mukhopadhyay and Chakrabarti (1999).

In fact, local values of the reflection and transmission coefficients could
also be calculated numerically by using quantum mechanical approach. We only
discuss the case of � = 0.001. First we replace the potentials (shown in Fig. 3(b))
by a collection of step functions as shown in Fig. 8(a)(only give the figure of V+).
In reality, we use as many as 10,000 steps to accurately follow the shape of the
potential. The wave function on each step should have the form as

Z+,n = An exp[iknr̂∗,n] + Bn exp[−iknr̂∗,n]. (35)

The following standard junction conditions are included to ensure the function
smooth

Z+,n = Z+,n+1 (36)

dZ+
dr̂∗

∣∣∣∣
n

= dZ+
dr̂∗

∣∣∣∣
n+1

(37)
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Fig. 6. Nature of real and imaginary parts of radial wave functions for � = 0.11.

The instantaneous reflection coefficient and the transmission coefficient have the
forms Rn = |Bn|2

|An|2 , Tn = 1 − Rn respectively. To calculate the reflection and trans-
mission coefficients at each junction, we also assume the inner boundary condition
that the reflection coefficient vanishes when r = re. In Fig. 8(b) we show the in-
stantaneous reflection coefficients obtained by the two methods. The two curves
agree with each other perfectly which means the IWKB method is successfully
valid intantaneously.

We have chosen m = σ = 0.8, M = 1 in all above calculations.
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Fig. 7. Behaviour of radial wave functions for � = 0.001.

4.2. Solution of Region II

In this region, the total energy of the incoming particle is less than the
maximum value of the potential. Then the WKB method is not valid in the whole
range of r̂∗. In the range except the neighbour of the two points at which total energy
matches with the potential energy the WKB approximation is still valid. So the
reflection and transmission coefficients and the wave function can be calculated
in the same way described before. While when the potential energy dominates
over the total energy, the solution will take the form exp(+u)√

k
and exp(−u)√

k
. In the
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Fig. 8. (a) Step (solid) approximating a potential (dotted). (b) Comparison of variation of
reflection coefficient R using WKB method (solid) and step-potential method (dotted).

range where WKB is not valid, the solution will be a linear combination of Airy
functions because the potential is a approximately linear function of r̂∗ in those
intervals. The solutions with Airy founctions must match with that obtained by
WKB approximation at the junctions. In the latter range, the equation reduces to

d2Z+
dx2

− xZ+ = 0, (38)

where x = β1/3(r̂∗ − p), β is chosen to be positive and p is one of the turning
points where the total energy matches with potential energy.

Let Z+(x) = x1/2Y (x) and when x > 0 the Eq. (38) reduces to

x2 d2Y

dx2
+ x

dY

dx
−

(
x3 + 1

4

)
Y (x) = 0, (39)

let ξ = 2
3x3/2, we obtain the modified Bessel equation

ξ 2 d2Y

dξ 2
+ ξ

dY

dξ
−

(
ξ 3 + 1

9

)
Y (ξ ) = 0, (40)

the solution of which is I+1/3(ξ ) and I−1/3(ξ ). Hence the solution of Eq. (38) will
be

Z+(x) = x1/2[C1I+1/3(ξ ) + C2I−1/3(ξ )]. (41)
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Similarly we obtain the Bessel equation when x < 0

ξ 2 d2Y

dξ 2
+ ξ

dY

dξ
+

(
ξ 2 − 1

9

)
Y (ξ ) = 0, (42)

The corresponding solution is

Z+(x) = |x|1/2[D1J+1/3(ξ ) + D2J−1/3(ξ )], (43)

where J±1/3 and I±1/3 are the Bessel functions and the modified Bessel functions
of order 1

3 respectively.
The Airy functions are defined as

Ai(x) = 1

3
x1/2[I−1/3(ξ ) − I+1/3(ξ )], x > 0, (44a)

Ai(x) = 1

3
|x|1/2[J−1/3(ξ ) + J+1/3(ξ )], x < 0, (44b)

Bi(x) = 1√
3
x1/2[I−1/3(ξ ) + I+1/3(ξ )], x > 0, (44c)

Bi(x) = 1√
3
|x|1/2[J−1/3(ξ ) − J+1/3(ξ )], x < 0. (44d)

In terms of Airy functions, the solution (41)and (43) take the forms

Z+ = 3

2
(C2 − C1)Ai(x) +

√
3

2
(C1 + C2)Bi(x), x > 0, (45a)

Z+ = 3

2
(D2 + D1)Ai(x) +

√
3

2
(D2 − D1)Bi(x), x < 0. (45b)

In order to match boundary conditiaons Z+(+0) = Z+(−0), we set C1 =
−D1 and C2 = D2. Then the solution corresponding x > 0 and that corresponding
x < 0 are continuous.

In Fig. 9(a) and (b) the nature of V± for the two cases are shown. The behavior
is much like that in region I.

In Fig. 10(a) and (b) we show the nature of V+ (solid line), k (dashed line)
and energy E (dotted line). k2 is negative in some region because σ 2 is no longer
greater than V± at all radii.

For � = 0.11 case, in the region r̂∗ ∼ −125 to −35 around the turning point
r̂∗ = −80.7352, the solution turns out to be (Abramowitz and Stegun, 1966)

Z+ = 1.560064 Ai(x) + 0.721624 Bi(x). (46)
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Fig. 9. Potential for (a) � = 0.11, (b) � = 0.001.

Similarly, the solution from r̂∗ ∼ −5 to 65 around the other turning point r̂∗ =
29.7591 can be calculated as (Abramowitz and Stegun, 1966)

Z+ = 1.574231 Ai(x) + 0.714739 Bi(x). (47)

For � = 0.001, in the region r̂∗ ∼ −10 to −2 around the turning point r̂∗ =
−5.9733, the solution turns out to be (Abramowitz and Stegun, 1966)

Z+ = 1.544757 Ai(x) + 0.734712 Bi(x), (48)
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Fig. 10. Behaviour of k (dashed), V+ (solid), E (dotted) for (a) � = 0.11, (b) � = 0.001.
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Fig. 11. R (solid) and T (dotted) for (a) � = 0.11, (b) � = 0.001.

the other turning point is r̂∗ = 5.1163, the solution in the region r̂∗ ∼ 1 to 9 is

Z+ = 1.471905 Ai(x) + 0.767276 Bi(x). (49)

Note that the solutions with Airy functions match with that obtained by WKB
approximation at the junctions.

In Fig. 11(a) and (b), we show the behaviors of reflection and transmission
coefficients. The constants A−he

and A+he
are calculated as before.

We have chosen M = 1, σ = 0.013, m = 0.009 for � = 0.11 and σ = 0.13,
m = 0.07 for � = 0.001 in all the calculations in this region.

5. SOLUTIONS OF DIFFERENT PARAMETERS

Black hole scatters incoming waves of different masses and different energies
quite differently. Maybe black hole is a mass spectrograph (Mukhopadhyay and
Chakrabarti, 1999, 2000). In this section we show a collection of solutions for
the case of � = 0.001. In Fig. 12a we show the reflection and transmission
coefficients for waves with parameters σ = 0.8 (solid), 0.9 (dotted), 0.98 (dashed)
and m = 0.8. We can see the higher the particle’s energy the larger the value of the
transmission coefficient and the smaller the value of the reflection coefficient. In
Fig. 12b the real part of the wave Z+ corresponding to the three cases are shown.
Near the two horizons the wave pattern is independent of σ . In order to show the
difference of Z+ for the three cases clearly we only plot the curves in a small
range of r̂∗. At a large distance except for the two horizons, the dispersal of the
waves with different σ is clear. The smaller the energy of the particle the larger
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Fig. 12. Comparison of (a) R and T (b) real amplitude of the wave function Z+ for
m = 0.8 and σ = 0.8 (solid), 0.9 (dotted) and 0.98 (dashed) respectively. (c and d)
Similar quantities for σ = 0.8 and m = 0.8 (solid), 0.72 (dotted) and 0.64 (dashed)
respectively.

the wavelength and the higher the amplitude of Re(Z+). In Fig. 12c we show
the reflection and transmission coefficients for waves with parameters m = 0.8
(solid), 0.72 (dotted) and 0.64 (dashed) respectively while keeping σ = 0.8. In
Fig. 12d the corresponding wave functions are shown. Close to the horizons the
nature of the wave as well as the reflection and transmission coefficients are quite
indepent of the rest mass of the partice. As the mass of the particle rises, the
reflection goes up and the transmission goes down with the amplitude of Re(Z+)
goes up.
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We don’t show the solutions of different parameters for � = 0.11 because
the potential is so low that the variation of reflection and transmission coefficients
and wave functions for different parameters is much less pronounced than that
for � = 0.001. We can predict as � dicreases the difference of results between
different parameters is more and more obvious. When � = 0, it becomes the case
of Schwarzschild black hole.

The particles with different masses and different energies can be dispersed
clearly after being scattered by black hole. Black hole may act as a huge mass
spectrograph.

6. SUMMARY

In this paper, we studied the scattering of Dirac particles in Schwarschild-de
Sitter geometry by using WKB method. We gave the semi-analytical solution
of Dirac equation and presented the nature of the instantaneous reflection and
transmission coefficients and the radial wave functions for two limiting cases
respectively.

We first classfied an entire parameter space in terms of the physical and un-
physical region. The physical region was further divided into two parts depending
on the height of potential and energy of the particle. In each region, we studied
the two limiting cases. The first case is the two horizons are close to each other,
we choose � = 0.11. The second case is when the two horizons are far apart,
we choose � = 0.001. From the discussion on the two cases, we can predict
the results for any case in this geometry when 0.001 < � < 0.11. When � = 0,
the result turned out to be that in Schwarzschild background which is studied in
Mukhopadhyay and Chakrabarti (1999). We chose a group of parameters as ex-
ample to study the nature of wave functions in each of the regions. From Fig. 2(a)
and (b) we can obtain the regions where the WKB method is valid. In the regions
where WKB solutions cannot be trusted, other methods such as Airy functions
approach must be employed.

The standard WKB solution can not be accurate in the whole range, it required
a slight modification. We gave the inner boundary condition, then the constants
A+ and A− became spatial dependent and the solution was satisfying in the whole
range. The reflection and transmission coefficients are all instantaneous values,
they are defined at a single point, the significance of the instantaneous reflection
and the transmission coefficients has been detailedly discussed in Mukhopadhyay
and Chakrabarti (1999, 2000). So the WKB method used here was also called
“instantaneous WKB” (IWKB for short) named by Mukhopadhyay and
Chakrabarti (1999, 2000). Moreover, we use the step-potential method to solve
the equation. The results getting from the two methods turned out to be agreed.
So the IWKB method is valid.
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Black hole can act as a huge mass spectrograph because it scatters waves with
different parameters quite differently. This can be seen from Fig. 12(a–d). While
when � = 0.11, the two horizons are so close to each other that the maximum
of the potential barrier is much lower and the variation of the potential barrier
is not clear whatever be the value of the parameters. Thus, the differentiation of
transmission and reflection coefficients or waves with different parameters is much
less pronounced than that when � = 0.001. In a way, a mixture of waves should
be splitted into its components by the black hole as long as � is quite small.

The effect on the solutions by the cosmological constant can be not negligible
from this paper, so the problem studied in this paper is significative if � is really
present. On the other hand we can use this method and the corresponding results
to discuss the problem of Hawking radiation in further.
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